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Abstract. The exact Green function of a relativistic Coulomb system is given by the
transformation method. The earlier treatments are based on the multiple-valued transformation
of Kustaanheimo and Stiefel as well as the perturbation expansions. The method presented in this
paper relates the relativistic Coulomb path integral to the simple ones and may apply to a large
class of problems.

1. Introduction

In this paper, we apply the transformation method [1, 2] to the path integral representation
of Kleinert for the relativistic potential problems [3, 4] and calculate the Green function of
the relativistic Coulomb system. The earlier treatment of the same system in [6] is solved
by the path integral with the space–time and Kustaanheimo–Stiefel (KS) transformations and
in [7] it is calculated via the perturbation technique. The method presented here combines
the space–time and coordinate transformation of the general case to form a new path integral
representation. It can relate the unknown relativistic path integral to the known one and solve it
by changing the variables of known solutions of the path integral. The procedure just involves
a search of the transformation functions and is applicable for arbitrary one-dimensional and
spherical symmetry systems.

2. Duru–Kleinert equivalence of the relativistic path integral

The fixed-energy Green function of a relativistic particle moving in external potentials from
xa to xb of the spatial part of the (D + 1) vector xµ = (x(λ), τ (λ)) can be expressed as the
local matrix element

G(xb,xa;E) = 〈xb|R̂|xa〉 (1)

of the resolvent operator

R̂ = ih̄

2mc

1

(ĤE − ε)
(2)

where i is the imaginary number by convention, h̄/mc is the well known Compton wavelength
of a particle of mass m, the energy dependent Hamiltonian operator is ĤE = p̂2/2m + V̂E in
which the potential operator V̂E is defined as (V 2 − 2EV )/2mc2 with V (x) representing the
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scalar potential of the systems and E is the system energy. Finally, ε is the pseudoenergy,
defined as (m2c4 −E2)/2mc2. Due to the additional freedom of the parameter describing the
relativistic orbits, the resolvent operator R̂ has the other representations

R̂ = ih̄

2mc

1

ρ̂l(ĤE − ε)
ρ̂l (3)

R̂ = ih̄

2mc
ρ̂r

1

(ĤE − ε)ρ̂r

(4)

or in more general form

R̂ = ih̄

2mc
ρ̂r

1

ρ̂l(ĤE − ε)ρ̂r

ρ̂l (5)

in which the operators ρ̂l, ρ̂r are arbitrary operators and may depend on p̂ and x̂. With these
considerations, the relativistic Green function in equation (1) can be expressed as the following
representation:

G(xb,xa;E) = 〈xb|R̂|xa〉 = ih̄

2mc

∫ ∞

λa

dλb〈xb|Ûε(λb − λa)|xa〉 (6)

where the pseudo-evolution operator Ûε is given by

Ûε(λb − λa) = ρ̂re
−(λb−λa)ρ̂l(ĤE−ε)ρ̂r ρ̂l. (7)

With the help of the time-slice technique, the relativistic Green function can therefore be
calculated from the path integral [6]:

G(xb,xa;E) = h̄i

2mc

∫ ∞

0
dS

∫
Dρ(λ)�[ρ(λ)]

∫
DDx(λ) exp{−AE[x, ẋ]/h̄}ρ(0) (8)

where S = (λb − λa) and the action

AE[x, ẋ] =
∫ λb

λa

dλ

[
m

2ρ(λ)
ẋ2(λ)− ρ(λ)

(E − V (x))2

2mc2
+ ρ(λ)

mc2

2

]
. (9)

Here ρ(λ) = ρl(λ)ρr(λ), ρ(0) is the terminal point of the function ρ(λ) and �[ρ(λ)] is some
convenient gauge-fixing functional. The only condition on �[ρ(λ)] is that∫

Dρ(λ)�[ρ(λ)] = 1. (10)

Equation (8) has an equivalent representation providing the new path integral solutions via
well known ones if the potential problems are in two-dimensional Minkowski space or possess
rotational invariance in any dimension. This is given by observing the function ρ(x), which
brings the kinetic term to an inconvenient form containing a space-dependent mass m/ρ(x).
This space dependence is removed by a coordinate transformation x = h(q). Since the
coordinate differentials are related by dx = h′(q) dq, we require the function h(q) to satisfy
h′2(q) = ρ(h(q)). Then the action in equation (9) turns into

Aq

E[q, q̇] =
∫ λb

λa

dλ

[
m

2
q̇2(λ)− ρ(q(λ))

(E − V (q(λ)))2

2mc2
+ ρ(q(λ))

mc2

2

]
(11)

with the obvious notation ρ(q) = ρ(h(q)), V (q) =V (h(q)). When we combine the measure
transformation of x = h(q), the important fact is that the fixed-energy Green function in
equation (8) can be related to the new kind of Green function by extending the action of
equation (11) to an effective potential Veff(q(s)). This provides us with a powerful method to
evaluate the relativistic path integral via the known one.
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For relativistic systems with spherical symmetries, it is given by [3, 4]

G(xb,xa;E) = 1

(rbra)(D−1)/2

∞∑
l=0

GN
l (rb, ra;E)

∑
m̂

Ylm̂(x̂b)Y
∗
lm̂(x̂a) (12)

where the functionsYlm̂(x̂) are theD-dimensional hyperspherical harmonics andGN
l (rb, ra;E)

is the new radical transformed Green function. It reads

GN
l (rb, ra;E) = h̄i

2mc
ρ

1/4
b ρ1/4

a G(qb,qa; E) (13)

with the Green function G(qb,qa; E) of the fixed pseudoenergy E

G(qb, qa; E) ≡
∫ ∞

0
dS

∫
Dq(λ)e−AN[q,q̇]/h̄ (14)

in which

AN[q, q̇] =
∫ λb

λa

dλ

[
m

2
q̇2(λ) + ρ(q(λ))

(
h̄2

2m

(l + D/2 − 1)2 − 1/4

r2(q(λ))

− [E − V (r(q))]2

2mc2
+
mc2

2

)
+ Veff(q(λ))

]
. (15)

The effective potential Veff is given by [1–5]

Veff(q(λ)) = − h̄2

m

[
1

4

h′′′(q)
h′(q)

− 3

8

(
h′′(q)
h′(q)

)2
]

(16)

with h′(q) representing the derivative dh(q)/dq and the transformation function h(q) defined
as r = h(q), which is related to the local gauge transformation function ρ(r) by the following
equality:

h′2(q) = ρ(r). (17)

The detailed time-slice analysis can be found in chapter 14 of [1] and [5].

3. Green function of the relativistic Coulomb system by the transformation method

Let us now apply the equivalent relation of equation (13) to calculate the exact Green function
of the relativistic Coulomb system. For such a system as under consideration, the potential
V (rC) = −e2/rC and the relativistic radial path integral in equation (8) reads [3, 4, 8]

GlC(rCb, rCa;EC) = h̄i

2mCc

∫ ∞

0
dS

∫
Dρ(λ)�[ρ(λ)]

∫
DrC(λ) exp

{
−1

h̄
Al[rC, r

′
C]

}
(18)

with the action

Al[rC, r
′
C] =

∫ λb

λa

dλ

[
mC

2ρ(λ)
r ′2

C (λ) +
ρ(λ)h̄2

2mC

(lC + DC/2 − 1)2 − 1/4

r2
C

× − ρ(λ)
(EC + e2/rC)

2

2mCc2
+ ρ(λ)

mCc
2

2

]
. (19)

The Roman subscript C specifies the Coulomb system. Let us apply the transformation
formula (13) to this relativistic system by taking the following transformation variables:

rC = h(x) = ex

h′2(x) = e2x = ρ(rC) = r2
C

(20)
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which maps the interval r ∈ (0,∞) into x ∈ (−∞,∞) and leads to the effective potential

Veff(x(s)) = h̄2

8mC
; (21)

then the transformed Green function (13) turns into the non-relativistic Morse potential system:

GN
lC
(rCb, rCa;EC) = h̄i

2mCc
ρ

1/4
b ρ1/4

a G(xb,xa; EM)

= h̄i

2mCc
exb/2exa/2

∫ ∞

0
dS

∫
Dx(s)e−AN[x,ẋ]/h̄ (22)

with the action

AN[x, ẋ] =
∫ S

0
ds

[
mC

2
ẋ2(s) +

v2h̄2

2mC
(e2x − 2βex)− EM

]
. (23)

The parameters associated with the relativistic Coulomb system are given as

v = 1

h̄c

√
m2

Cc
4 − E2

C

β = ECe2

m2
Cc

4 − E2
C

EM = − h̄2

2mC
[(lC + DC/2 − 1)2 − α2]

(24)

where the notation α = e2/h̄c is the fine-structure constant. To proceed further, let us make a
trivial transformation by taking

x = 2xO

mC = mO/4.
(25)

This maps equation (22) into

GN
lC
(rCb, rCa;EC) = h̄i

2mCc
exOb exOa

1

2

∫ ∞

0
dS

∫
DxO(s)e

−AN[xO,ẋO]/h̄ (26)

with the transformed new action

AN[xO, ẋO] =
∫ S

0
ds

[
mO

2
ẋ2

O(s) +
2v2h̄2

mO
(e4xO − 2βe2xO)− EM

]
. (27)

The factor 1
2 in equation (26) accounts for the fact that the normalized states are related by

|x〉 = |xO〉/2. At this point, we can apply the transformation method again by taking the
following transformation functions:

xO = ln z = h(z)

h′2(z) = 1/z2 = ρ(xO) = e−2xO
(28)

which maps the interval xO ∈ (−∞,∞) into z ∈ (0,∞) and leads the effective potential
Veff(z) to

Veff(z) = − h̄2

8mOz2
. (29)

The Green function in equation (26) becomes

GN
lC
(rCb, rCa;EC) = h̄i

2mCc

1

2
zbza

{
1√
zbza

∫ ∞

0
dS ′

∫ ∞

0
Dz(τ )e−AN[z,ż]/h̄

}
(30)
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with the action of the radial simple harmonic oscillator

AN[z, ż] =
∫ S ′

0
dτ

[
mO

2
z2(τ ) +

h̄2

2mO

(lO + DO/2 − 1)2 − 1/4

z2
+
mOω

2z2

2
− EO

]
. (31)

The parameter relations between the equations (26) and (31) are given as

h̄2(lO + DO/2 − 1)2 = −2mOEM

mOω
2/2 = 2v2h̄2/mO

EO = 4βv2h̄2/mO.

(32)

By inserting the relations in equation (24) into these equalities, we obtain the parameter
relations between the relativistic Coulomb and radial harmonic oscillator

µO = 2
√
µ2

C − α2

ω =
√
m2

Cc
4 − E2

C/2mCc

EO = ECe2/mCc
2

(33)

where for simplicity the quantities (lO +DO/2 − 1) and (lC +DC/2 − 1) have been defined as
µO andµC, respectively. With the well known Green function of the radial harmonic oscillator

GlO(zb, za; EO) = −i
1

ω

$((1 + µO)/2 − EO/2h̄ω)

$(1 + µO)
√
zbza

×WEO/2h̄ω,µO/2((mOω/h̄)z
2
b)MEO/2h̄ω,µO/2((mOω/h̄)z

2
a) (34)

we obtain the exact Green function of the relativistic Coulomb system in any dimensions:

GlC(rCb, rCaEC) = mCc√
m2

Cc
4 − E2

C

×
$

(
1/2 +

√
(lC + DC/2 − 1)2 − α2 − ECα/

√
m2

Cc
4 − E2

C

)

$
(

1 + 2
√
(lC + DC/2 − 1)2 − α2

)
×W

ECα/
√

m2
Cc

4−E2
C,
√

(lC+DC/2−1)2−α2

(
2

h̄c

√
m2

Cc
4 − E2

CrCb

)

×M
ECα/

√
m2

Cc
4−E2

C,
√

(lC+DC/2−1)2−α2

(
2

h̄c

√
m2

Cc
4 − E2

CrCa

)
. (35)

The result in the three-dimensional case is first given in [6] by performing the path integral with
KS transformation and later in [7] in any dimensions by summing the perturbation expansions.

4. Concluding remarks

In this paper, the transformation method is applied to the relativistic path integral. As an
interesting application, the Green function of the relativistic Coulomb system is solved by the
method. Different from the path integral approach [6] and the perturbation approach [7], the
procedures presented in this paper just need to find the appropriate transformation functions.
Furthermore, all one-dimensional systems and any higher-dimensional system with rotationally
invariant systems are applicable. It is our hope that the method presented here may offer us a
new way to solve the relativistic potential problems.
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